Fast and Exact Top-k Algorithm for PageRank
نویسندگان
چکیده
In AI and Web communities, many applications utilize PageRank. To obtain high PageRank score nodes, the original approach iteratively computes the PageRank score of each node until convergence by using the whole graph. If the graph is large, this approach is infeasible due to its high computational cost. The goal of this study is to find top-k PageRank score nodes efficiently for a given graph without sacrificing accuracy. Our solution, F-Rank, is based on two ideas: (1) It iteratively estimates lower/upper bounds of PageRank scores, and (2) It constructs subgraphs in each iteration by pruning unnecessary nodes and edges to identify top-k nodes. Our theoretical analysis shows that F-Rank guarantees result exactness. Experiments show that F-Rank finds top-k nodes much faster than the original approach.
منابع مشابه
Monte Carlo Methods for Top-k Personalized PageRank Lists and Name Disambiguation
We study a problem of quick detection of top-k Personalized PageRank lists. This problem has a number of important applications such as finding local cuts in large graphs, estimation of similarity distance and name disambiguation. In particular, we apply our results to construct efficient algorithms for the person name disambiguation problem. We argue that when finding top-k Personalized PageRa...
متن کاملQuick Detection of Top-k Personalized PageRank Lists
We study a problem of quick detection of top-k Personalized PageRank (PPR) lists. This problem has a number of important applications such as finding local cuts in large graphs, estimation of similarity distance and person name disambiguation. We argue that two observations are important when finding top-k PPR lists. Firstly, it is crucial that we detect fast the top-k most important neighbors ...
متن کاملFast Algorithm for Top-k Personalized PageRank Queries with Layered Graphs
In recent years, an efficient method of performing analyses and computations on graph networks, regarding recent and up-to-date data, has been needed due to continuous growth of datasets. Personalized PageRank is one of the most well-known computation methods for graphs. Personalized PageRank computes the relative importance or relevance with respect to a set of given nodes, called start nodes ...
متن کاملThe Evaluation of the Team Performance of MLB Applying PageRank Algorithm
Background. There is a weakness that the win-loss ranking model in the MLB now is calculated based on the result of a win-loss game, so we assume that a ranking system considering the opponent’s team performance is necessary. Objectives. This study aims to suggest the PageRank algorithm to complement the problem with ranking calculated with winning ratio in calculating team ranking of US MLB. ...
متن کاملFast Katz and Commuters: Efficient Estimation of Social Relatedness in Large Networks
Motivated by social network data mining problems such as link prediction and collaborative filtering, significant research effort has been devoted to computing topological measures including the Katz score and the commute time. Existing approaches typically approximate all pairwise relationships simultaneously. In this paper, we are interested in computing: the score for a single pair of nodes,...
متن کامل